

חיזוי התפתחות הלקטית ורודה על-ידי מודל תֹהליכים מבוסס חישה מרחוק

חיים אלבז דוד הלמן מיכל אקסלרוד

The Robert H Smith Faculty of Agriculture, **Food and Environment**

כנס דיווחי מחקרים בענף הכותנה – עונת 2020

טיפול

בלבול- 50 חוטים/דונם

מקור: המועצה לייצור ושיווק כותנה בע״מ

$$\frac{dN_{i,j}(t)}{dt} = \frac{k}{del_j} \left[N_{i-1,j}(t) - N_{i,j}(t) \right] - \mu_i(t) \cdot N_{i,j}(t)$$
$$r_i(t) = \frac{k \cdot N_i(t)}{del}$$
$$\frac{dr_i(t)}{dt} = \frac{k}{del} \left\{ r_{i-1}(t) - \left[1 + \mu_i(t) \cdot \frac{del}{k} \right] \cdot r_i(t) \right\}$$

Population distribution in a life-stage [N/cohort]

MPM6FC www.alamy.com

Ecological Modelling 311 (2015) 39–47 Contents lists available at ScienceDirect

Ecological Modelling

Modeling insect population fluctuation temperature

Moshe Blum^a, Itamar M. Lensky^a, Polychronis Rei

^a Department of Geography and Environment, Bar-Ilan University, Ramat-Gan 52900, ^b Department of Entomology, Agricultural Research Organization, The Volcani Center, I

A Integration (physiological) time

A Integration (physiological) time

B Data saving procedure

A Integration (physiological) time

B Data saving procedure

$\boldsymbol{\mathsf{C}}$ (Real) spatial representation

Initial Egg Population Distribution (%) - Day 1

A Integration (physiological) time

$\boldsymbol{\mathsf{C}}$ (Real) spatial representation

Initial Egg Population Distribution (%) - Day 1

Previous Life Stage	Next Life Stage
Previous Day	Next Day

STAGE A - Biology

Table 3

Estimated parameters of the linear and non-linear models fitted to median development rates temperature range used for fitting linear relationship: Egg stage (15–35 °C); larval stage (15–30 ° minus sign. Thermal constant calculated by taking inverse of slope (b) i.e. 1/b. Non-linear mod-

Life stage	Linear mo	del						
	a	b	T _{min} (°C)	DD	\mathbb{R}^2	F	df	р
Egg	-0.154	0.014	11.23	72.99	0.97	92.83	1,3	0.00
Larva	-0.039	0.003	11.37	285.71	0.99	303.21	1,2	0.00
Pupa	-0.076	0.007	11.00	144.92	0.97	146.60	1,4	0.00
Egg– Adult	-	-	11.20	503.62	-	-	-	-

Peddu et al. (2020), Crop Protection

STAGE A - Biology

Table 3

Estimated parameters of the linear and non-linear models fitted to median development rates temperature range used for fitting linear relationship: Egg stage (15–35 °C); larval stage (15–30 ° minus sign. Thermal constant calculated by taking inverse of slope (b) i.e. 1/b. Non-linear models and the state of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking inverse of slope (b) i.e. 1/b. Non-linear models are stated by taking

Life stage	Linear mo	del						
	a	b	T _{min} (°C)	DD	\mathbb{R}^2	F	df	р
Egg	-0.154	0.014	11.23	72.99	0.97	92.83	1,3	0.00
Larva	-0.039	0.003	11.37	285.71	0.99	303.21	1,2	0.00
Pupa	-0.076	0.007	11.00	144.92	0.97	146.60	1,4	0.00
Egg– Adult	=	=	11.20	503.62	-	-	-	-

Peddu et al. (2020), Crop Protection

Table 3.	t _L , linear re	gression p	parameters	i (SE) of	PBW	developmental	rate	(1/days), a	nd mean I)D (SD)	duration
for selected	age classes	of eggs an	d larvae, t	he pupa	l stage	, and egg to ad	lult			()	

Stage/instar	t _L (℃) -	Linear regression	-1	$DD(>t_L)$	Temp range		
		a (SE)	b (SE)	· •	ź (SD)	n	(°C)
Egg							
White	8.17	-0.3185 (0.0944)	0.0390 (0.0037)	0.97	22.92 (5.77)	364	20-30
Orange	13.96	-0.3923 (0.0212)	0.0281 (0.0008)	0.99	35.79 (4.80)	429	20-32.5
Head capsule	14.34	-1.2616 (0.3467)	0.0880 (0.0137)	0.93	10.84 (3.67)	364	20-30
Total	13.10	-0.1887 (0.0179)	0.0144 (0.0007)	0.99	68.03 5.20)	429	20-32.5
Larval ⁶							
LI	10.29	-0.1883 (0.0241)	0.0183 (0.0009)	0.99	54.92 9.28)	354	20-32.5
L2	10.00	-0.1821 (0.0303)	0.0182 (0.0011)	0.98	56.44 (18.92)	354	20-32.5
1.3	12.63	-0.3043 (0.0634)	0.0241 (0.0024)	0.96	40.29 (16.95)	354	20-32.5
LA	12.90	-1.1419 (0.0121)	0.0110 (0.0005)	0.99	90.82 (17.86)	355	20-32.5
Total	12.38	-0.1557 (0.0059)	0.0045 (0.0002)	0.99	221.92 (44.38)	377	20-32.5
Pupal	11.69	-0.0854 (0.0142)	0.0073 (0.0005)	0.98	137.79 (12.39)	377	20-32.5
Egg-adult	12.04	-0.0277 (0.0005)	0.0023 (0.0001)	0.99	442.61 ^e (3.50)	-	20-32.5
					and the second se		

^a Based on age-specific t_L ; n = number of individuals surviving the age class for the given temperature range. ^b For four-instar larvae.

^c Based on mean cohort durations for each stage (assuming four-instar larvae) at each temperature rather than for n individuals (i.e., same individuals not followed from egg to adult); n = 6 for each temperature from 20 to 32.5°C.

Hutchison et al. (1986), Annals of the Entimol. Soc. of America

STAGE B – Test the model with real Tsat data on a short period of time (1.5 months)

STAGE B – Test the model with real Tsat data on a short period of time (1.5 months)

(not considering mortality)

Next steps...

הקשר בין NDVI מלוויינים ומספר הלקטים בשדה

תצוגה מקדימה (הדמיה) של תוצר המודל בשדה כותנה (2018)

תצוגה מקדימה (הדמיה) של תוצר המודל בשדה כותנה (2018)

חיזוי התפתחות הלקטית ורודה על-ידי מודל תהליכים מבוסס חישה מרחוק

חיים אלבז דוד הלמן מיכל אקסלרוד

Lab website: http://davidhelman.weebly.com

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM The Robert H Smith Faculty of Agriculture, Food and Environment

כנס דיווחי מחקרים בענף הכותנה – עונת 2020